Please use this identifier to cite or link to this item:
http://hdl.handle.net/10609/107866
Title: | Análisis de métodos de aprendizaje automático para la clasificación de señales EEG de pacientes con epilepsia |
Author: | Álvarez Mijares, Dimas |
Director: | García Vizcaino, David |
Tutor: | Solé-Casals, Jordi |
Abstract: | Design of a system based on 'deep learnig' capable of classifying encephalogram (EEG) signals corresponding to people suffering from epilepsy. After training the program, it would allow discrimination between focal signals (with epilepsy) from non-focal (healthy) signals. Methods of extracting signal characteristics are also analyzed to apply 'machine learning' algorithms obtaining good classification accuracy. |
Keywords: | machine learning electroencephalography deep learning epilepsy |
Document type: | info:eu-repo/semantics/masterThesis |
Issue Date: | Jan-2020 |
Publication license: | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
Appears in Collections: | Bachelor thesis, research projects, etc. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
dimasalmiTFM0120memoria.pdf | Memoria del TFM | 1,98 MB | Adobe PDF | View/Open |
Share:
This item is licensed under a Creative Commons License