Please use this identifier to cite or link to this item: http://hdl.handle.net/10609/107866
Title: Análisis de métodos de aprendizaje automático para la clasificación de señales EEG de pacientes con epilepsia
Author: Álvarez Mijares, Dimas
Director: García Vizcaino, David
Tutor: Solé-Casals, Jordi  
Abstract: Design of a system based on 'deep learnig' capable of classifying encephalogram (EEG) signals corresponding to people suffering from epilepsy. After training the program, it would allow discrimination between focal signals (with epilepsy) from non-focal (healthy) signals. Methods of extracting signal characteristics are also analyzed to apply 'machine learning' algorithms obtaining good classification accuracy.
Keywords: machine learning
electroencephalography
deep learning
epilepsy
Document type: info:eu-repo/semantics/masterThesis
Issue Date: Jan-2020
Publication license: http://creativecommons.org/licenses/by-nc-nd/3.0/es/  
Appears in Collections:Bachelor thesis, research projects, etc.

Files in This Item:
File Description SizeFormat 
dimasalmiTFM0120memoria.pdfMemoria del TFM1,98 MBAdobe PDFThumbnail
View/Open