Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/151368
Título : Neural metaphor detection with a residual biLSTM-CRF model
Autoría: Torres Rivera, Andrés  
Oliver, Antoni  
Climent, Salvador  
Coll-Florit, Marta  
Citación : Torres Rivera, A. [Andrés], Oliver, A. [Antoni], Climent Roca, S. [Salvador] & Coll-Florit, M. [Marta]. (2020). Neural Metaphor Detection with a Residual biLSTM-CRF Model. Proceedings of the Second Workshop on Figurative Language Processing (p. 197-203). Stroudsburg, PA: Association for Computational Linguistics
Resumen : In this paper we present a novel resource inexpensive architecture for metaphor detection based on a residual bidirectional long short-term memory and conditional random fields. Current approaches on this task rely on deep neural networks to identify metaphorical words, using additional linguistic features or word embeddings. We evaluate our proposed approach using different model configurations that combine embeddings, part of speech tags, and semantically disambiguated synonym sets. This evaluation process was performed using the training and testing partitions of the VU Amsterdam Metaphor Corpus. We use this method of evaluation as reference to compare the results with other current neural approaches for this task that implement similar neural architectures and features, and that were evaluated using this corpus. Results show that our system achieves competitive results with a simpler architecture compared to previous approaches.
Tipo de documento: info:eu-repo/semantics/conferenceObject
Fecha de publicación : jul-2020
Licencia de publicación: http://creativecommons.org/licenses/by/4.0/es/  
Aparece en las colecciones: Conferencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020-FIGLANG-NeuralMetaphor-Torres-Oliver-Climent-Coll-Florit.pdf271,66 kBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons