Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/10609/151501
Títol: Does NMT make a difference when post-editing closely related languages? The case of Spanish-Catalan
Autoria: Alvarez Vidal, Sergi  
Oliver, Antoni  
Badia, Toni  
Citació: Alvarez, S. [Sergi], Oliver, A. [Antoni] & Badia, T. [Toni]. (2019). Does NMT make a difference when post-editing closely related languages? The case of Spanish-Catalan A Proceedings of MT Summit XVII. Volume 2: Translator, Project and User Tracks, Dublin, Irlanda 19-23 agost de 2019
Resum: In the last years, we have witnessed an increase in the use of post-editing of machine translation (PEMT) in the translation industry. It has been included as part of the translation workflow because it increases productivity of translators. Currently, many Language Service Providers offer PEMT as a service. For many years now, (closely) related languages have been post-edited using rulebased and phrase-based machine translation (MT) systems because they present less challenges due to their morphological and syntactic similarities. Given the recent popularity of neural MT (NMT), this paper analyzes the performance of this approach compared to phrase-based statistical MT (PBSMT) on in-domain and general domain documents. We use standard automatic measures and temporal and technical effort to assess if NMT yields a real improvement when it comes to post-editing the Spanish-Catalan language pair.
Tipus de document: info:eu-repo/semantics/conferenceObject
Data de publicació: ago-2019
Llicència de publicació: http://creativecommons.org/licenses/by-nd/.0/es/  
Apareix a les col·leccions:Conferencias

Arxius per aquest ítem:
Arxiu Descripció MidaFormat 
2019-DoesNMT-MTSummit-Alvarez-Oliver-Badia.pdf185,86 kBAdobe PDFThumbnail
Veure/Obrir
Comparteix:
Exporta:
Consulta les estadístiques

Aquest ítem està subjecte a una llicència de Creative CommonsLlicència Creative Commons Creative Commons