Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/151501
Título : Does NMT make a difference when post-editing closely related languages? The case of Spanish-Catalan
Autoría: Alvarez Vidal, Sergi  
Oliver, Antoni  
Badia, Toni  
Citación : Alvarez, S. [Sergi], Oliver, A. [Antoni] & Badia, T. [Toni]. (2019). Does NMT make a difference when post-editing closely related languages? The case of Spanish-Catalan A Proceedings of MT Summit XVII. Volume 2: Translator, Project and User Tracks, Dublin, Irlanda 19-23 agost de 2019
Resumen : In the last years, we have witnessed an increase in the use of post-editing of machine translation (PEMT) in the translation industry. It has been included as part of the translation workflow because it increases productivity of translators. Currently, many Language Service Providers offer PEMT as a service. For many years now, (closely) related languages have been post-edited using rulebased and phrase-based machine translation (MT) systems because they present less challenges due to their morphological and syntactic similarities. Given the recent popularity of neural MT (NMT), this paper analyzes the performance of this approach compared to phrase-based statistical MT (PBSMT) on in-domain and general domain documents. We use standard automatic measures and temporal and technical effort to assess if NMT yields a real improvement when it comes to post-editing the Spanish-Catalan language pair.
Tipo de documento: info:eu-repo/semantics/conferenceObject
Fecha de publicación : ago-2019
Licencia de publicación: http://creativecommons.org/licenses/by-nd/.0/es/  
Aparece en las colecciones: Conferencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2019-DoesNMT-MTSummit-Alvarez-Oliver-Badia.pdf185,86 kBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons