Please use this identifier to cite or link to this item: http://hdl.handle.net/10609/151558
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarcia-Font, Victor-
dc.contributor.authorGarrigues, Carles-
dc.contributor.authorRifà-Pous, Helena-
dc.date.accessioned2024-11-20T09:02:01Z-
dc.date.available2024-11-20T09:02:01Z-
dc.date.issued2016-10-02-
dc.identifier.citationGarcia-Font, V. [Victor], Garrigues, C. [Carles] & Rifà-Pous, H. [Helena]. (2016). Anomaly detection in smart city parking data: A case study. XIV Reunión Española sobre Criptología y Seguridad de la Información. p. 81-85.-
dc.identifier.isbn978-84-608-9470-4-
dc.identifier.urihttp://hdl.handle.net/10609/151558-
dc.description.abstractWireless Sensor Networks (WSNs) are a principal technology in many smart city projects to collect data from the streets and send it to the data centers of the municipalities. Nonetheless, WSN are easy to attack and, therefore, smart city administrators have to verify that the WSN data is faultless. In this article we present a case study on anomaly detection in smart city parking data using WSN information from a Barcelona smart city provider. In order to analyze this data, we used Oneclass Support Vector Machines (OC-SVM) in a dataset with application information from the parking sensor readings and also system status data. The results of the anomaly analysis were satisfactory, achieving a 97.13% detection rate and 13.13% false positive rate.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherDept.Ciencias Matemáticas e Informática - UIB-
dc.relation.ispartofActas de la XIV Reunión Española sobre Criptología y Seguridad de la Información (RECSI), 2016.-
dc.rights© The Author(s)-
dc.subjectinformation securityen
dc.subjectintrusion detectionen
dc.subjectsmart citiesen
dc.subjectsupport vector machinesen
dc.subjectwireless sensor networksen
dc.titleAnomaly detection in smart city parking data: A case studyen
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.gir.idCO/0000003875-
dc.type.versioninfo:eu-repo/semantics/publishedVersion-
Appears in Collections:Capítols o parts de llibres

Files in This Item:
File Description SizeFormat 
Anomaly_detection_in_smart_city_parking_data_A_case_study.pdf473,34 kBAdobe PDFThumbnail
View/Open
Share:
Export:
View statistics

Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.