Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/10609/151560
Títol: Manifold alignment approach to cover source mismatch in steganalysis
Autoria: Lerch-Hostalot, Daniel  
Megias, David  
Citació: Lerch-Hostalot, D. [Daniel] & Megias, D. [David]. (2016). Manifold alignment approach to cover source mismatch in steganalysis. Reunión Española de Criptografía y Seguridad de la Información (RECSI XIV). p. 123-128.
Resum: Cover source mismatch (CSM) is an important open problem in steganalysis. This problem, known as domain adaptation in the field of machine learning, deals with the decrease in the classification accuracy when a classifier is moved from the laboratory into the real world. In this paper, we present an approach to CSM based on domain adaptation using manifold alignment algorithms. In this novel approach, we use manifold alignment to find a latent space where the two datasets (the one used for training and the one used for testing) have a common representation. We show that manifold alignment can significantly increase the accuracy of the classifier in cross-domain classification.
Paraules clau: steganalysis
cover source mismatch
domain adaptation
manifold alignment
machine learning
Tipus de document: info:eu-repo/semantics/conferenceObject
Versió del document: info:eu-repo/semantics/publishedVersion
Data de publicació: 2-oct-2016
Apareix a les col·leccions:Capítols o parts de llibres

Arxius per aquest ítem:
Arxiu Descripció MidaFormat 
Manifold_alignment_approach_to_cover_source_mismatch_in_steganalysis.pdf558,63 kBAdobe PDFThumbnail
Veure/Obrir
Comparteix:
Exporta:
Consulta les estadístiques

Els ítems del Repositori es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.