Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/151560
Título : Manifold alignment approach to cover source mismatch in steganalysis
Autoría: Lerch-Hostalot, Daniel  
Megias, David  
Citación : Lerch-Hostalot, D. [Daniel] & Megias, D. [David]. (2016). Manifold alignment approach to cover source mismatch in steganalysis. Reunión Española de Criptografía y Seguridad de la Información (RECSI XIV). p. 123-128.
Resumen : Cover source mismatch (CSM) is an important open problem in steganalysis. This problem, known as domain adaptation in the field of machine learning, deals with the decrease in the classification accuracy when a classifier is moved from the laboratory into the real world. In this paper, we present an approach to CSM based on domain adaptation using manifold alignment algorithms. In this novel approach, we use manifold alignment to find a latent space where the two datasets (the one used for training and the one used for testing) have a common representation. We show that manifold alignment can significantly increase the accuracy of the classifier in cross-domain classification.
Palabras clave : steganalysis
cover source mismatch
domain adaptation
manifold alignment
machine learning
Tipo de documento: info:eu-repo/semantics/conferenceObject
Versión del documento: info:eu-repo/semantics/publishedVersion
Fecha de publicación : 2-oct-2016
Aparece en las colecciones: Capítols o parts de llibres

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Manifold_alignment_approach_to_cover_source_mismatch_in_steganalysis.pdf558,63 kBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.