Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/151573
Título : Dealing with bilingual divergences in MT using target language N-gram models
Autoría: Melero, Maite  
Oliver, Antoni  
Badia, Toni  
Suñol, Teresa
Citación : Melero, M. [Maite], Oliver, A. [Antoni], Badia T. [Toni] & Suñol, T. [Teresa]. (2007). Dealing with bilingual divergences in MT using target language N-gram models. In various authors, ed. METIS-II workshop: new approaches to Machine Translation. 8 pp
Resumen : In this paper we present a prototype translation system that uses only a sourcelanguage (SL) tagger, a bilingual dictionary and a lemmatised target-language (TL) corpus. In our approach, the TL corpus is innovatively exploited both for lexical selection (selecting among the different translations proposed by the dictionary) and for structure building of the output. To that end a series of n-gram model over lemmas and POS tags are built from the TL corpus, which are then searched at run-time. The system presented here uses Spanish as SL and English as TL but the architecture is language independent and translatable to languages with very little NLP development.
Tipo de documento: info:eu-repo/semantics/conferenceObject
Fecha de publicación : ene-2007
Licencia de publicación: http://creativecommons.org/licenses/by-nc-nd/3.0/es/  
Aparece en las colecciones: Conferencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2007-Dealing-Melero-Oliver-Badia-Sunol.pdf65,08 kBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons