Please use this identifier to cite or link to this item:
http://hdl.handle.net/10609/150502
Title: | Detecció automàtica de defectes de soldadura mitjançant l’anàlisi de visual transformers i tècniques de time series imaging |
Author: | Velasco Gallego, Christian |
Tutor: | Isern, David |
Others: | Sánchez Castaño, Friman |
Abstract: | Numerous defects, such as hull damage, engine failures, and equipment malfunctions, can occur in maritime operations, which may affect the safety and reliability of ships. Accordingly, the detection and classification of defects in ships is of paramount importance to guarantee its adequate functioning. This paper introduces a new time series imaging approach for defect identification by combining distinct time series imaging approaches with a vision transformer. Specifically, the time series imaging methods Gramian Angular Field (GAF), Recurrence Plot (RP), and Markov Transition Field (MTF) are analysed in this study. A case study on metal arc welding is also presented to highlight the performance of the proposed methodology and assess the feasibility of implementing this type of methods for defect identification. The results of this case study indicate that Gramian Difference Angular Field is the most feasible encoding method for the task defined, as this method achieved an accuracy of over 70%. |
Keywords: | identificació de defectes aprenentatge profund codificació de sèries temporals en imatges |
Document type: | info:eu-repo/semantics/bachelorThesis |
Issue Date: | Jun-2024 |
Publication license: | http://creativecommons.org/licenses/by-nc/3.0/es/ |
Appears in Collections: | Bachelor thesis, research projects, etc. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
cvelascogTFG0624memoria.pdf | Memòria del TFG | 891,98 kB | Adobe PDF | View/Open |
cvelascogTFG0624presentacio.pdf | Presentació del TFG | 854 kB | Adobe PDF | View/Open |
Share:
This item is licensed under aCreative Commons License