Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/151353
Título : Quantitative analysis of post-editing effort indicators for NMT
Autoría: Alvarez Vidal, Sergi  
Oliver, Antoni  
Badia, Toni  
Citación : Alvarez Vidal, S.[Sergi], Oliver, A. [Antoni] & Badia, [Toni]. (2020). Quantitative Analysis of Post-Editing Effort Indicators for NMT. Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, EAMT 2020 (p. 410-420). Lisboa: European Association for Machine Translation
Resumen : The recent improvements in machine translation (MT) have boosted the use of post-editing (PE) in the translation industry. A new MT paradigm, neural MT (NMT), is displacing its corpus-based predecessor, statistical machine translation (SMT), in the translation workflows currently implemented because it usually increases the fluency and accuracy of the MT output. However, usual automatic measurements do not always indicate the quality of the MT output and there is still no clear correlation between PE effort and productivity. We present a quantitative analysis of different PE effort indicators for two NMT systems (transformer and seq2seq) for English-Spanish in-domain medical documents. We compare both systems and study the correlation between PE time and other scores. Results show less PE effort for the transformer NMT model and a high correlation between PE time and keystrokes.
Tipo de documento: info:eu-repo/semantics/conferenceObject
Fecha de publicación : nov-2020
Licencia de publicación: http://creativecommons.org/licenses/by-nc-nd/3.0/es/  
Aparece en las colecciones: Conferencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020-EAMT-Quantitative-Alvarez-Oliver-Badia.pdf267,75 kBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons