Please use this identifier to cite or link to this item:
http://hdl.handle.net/10609/64768
Title: | Aprendizaje supervisado en conjuntos de datos no balanceados con redes neuronales artificiales: métodos de mejora de rendimiento para modelos de clasificación binaria en diagnóstico médico |
Author: | Águila Martínez, Juan |
Tutor: | Solanas Gómez, Agustí |
Others: | Universitat Oberta de Catalunya |
Keywords: | multivariate statistics neural networks |
Issue Date: | 15-Jun-2017 |
Publisher: | Universitat Oberta de Catalunya |
Abstract: | The following work addresses the problem of recognizing a set of patterns within a database obtained from scanned images through the liquid of mammary samples taken via FNA (Fine Needle Aspiration). Such data present a marked class imbalance, not to mention other features which degrade the usual supervised classification techniques in terms of performance. |
Language: | Spanish |
URI: | http://hdl.handle.net/10609/64768 |
Appears in Collections: | Bachelor thesis, research projects, etc. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
jaguilamaTFM0617memoria.pdf | Memoria del TFM | 6,94 MB | Adobe PDF | ![]() View/Open |
Share:


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.