Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHatami, Sara-
dc.contributor.authorEskandarpour, Majid-
dc.contributor.authorChica Serrano, Manuel-
dc.contributor.authorJuan, Angel A.-
dc.contributor.authorOuelhadj, Djamila-
dc.contributor.otherUniversitat Oberta de Catalunya. Internet Interdisciplinary Institute (IN3)-
dc.contributor.otherUniversidad de Granada-
dc.contributor.otherUniversity of Portsmouth-
dc.contributor.otherUniversité de Lille-
dc.identifier.citationHatami, S., Eskandarpour, M., Chica, M., Juan, A. A. & Ouelhadj, D. (2020). Green hybrid fleets using electric vehicles: solving the heterogeneous vehicle routing problem with multiple driving ranges and loading capacities. SORT: Statistics and Operations Research Transactions, 44 (1), 141-170. doi: 10.2436/20.8080.02.98-
dc.description.abstractThe introduction of Electric Vehicles (EVs) in modern fleets facilitates green road transportation. However, the driving ranges of EVs are limited by the duration of their batteries, which arise new operational challenges. Hybrid fleets of gas and EVs might be heterogeneous both in loading capacities as well as in driving-range capabilities, which makes the design of efficient routing plans a difficult task. In this paper, we propose a new Multi-Round Iterated Greedy (MRIG) metaheuristic to solve the Heterogeneous Vehicle Routing Problem with Multiple Driving ranges and loading capacities (HeVRPMD). MRIG uses a successive approximations method to offer the decision maker a set of alternative fleet configurations, with different distance-based costs and green levels. The numerical experiments show that MRIG is able to outperform previous works dealing with the homogeneous version of the problem, which assumes the same loading capacity for all vehicles in the fleet. The numerical experiments also confirm that the proposed MRIG approach extends previous works by solving a more realistic HeVRPMD and provides the decision-maker with fleets with higher green levels.en
dc.publisherSORT: Statistics and Operations Research Transactions-
dc.relation.ispartofSORT: Statistics and Operations Research Transactions, 2020, 44 (1)-
dc.rightsCC BY-NC-ND-
dc.subjectvehicle routing problemen
dc.subjectelectric vehiclesen
dc.subjectheterogeneous fleetsen
dc.subjectmultiple driving rangesen
dc.subjectsuccessive approximations methoden
dc.subjectproblema de rutas de vehículoses
dc.subjectproblema de rutes de vehiclesca
dc.subjectvehículos eléctricoses
dc.subjectvehicles elèctricsca
dc.subjectflotes heterogèniesca
dc.subjectflotas heterogéneases
dc.subjectrangos múltiples de conducciónes
dc.subjectrangs múltiples de conduccióca
dc.subjectmétodo de aproximaciones sucesivases
dc.subjectmètode d'aproximacions successivesca
dc.subject.lcshAutonomous vehicles-
dc.titleGreen hybrid fleets using electric vehicles: solving the heterogeneous vehicle routing problem with multiple driving ranges and loading capacities-
dc.subject.lemacVehicles autònomsca
dc.subject.lcshesVehículos autónomoses
Appears in Collections:Articles cientÍfics

Files in This Item:
File Description SizeFormat 
371186-Article Text-534806-1-10-20200626.pdf659,25 kBAdobe PDFThumbnail