Please use this identifier to cite or link to this item:
Title: Transcriptome profiling and longitudinal cohort studies of myositis subsets
Author: Pinal-Fernandez, Iago  
Director: Carrion, Carme  
Mammen, Andrew  
Keywords: myositis
inclusion body myositis
secuenciación de ARN
sequence analysis, RNA
Issue Date: 28-Dec-2020
Publisher: Universitat Oberta de Catalunya (UOC)
Abstract: Inflammatory myopathies are a heterogeneous family of rare autoimmune diseases affecting multiple organs and systems, including the skin, the lungs, the muscles and/or the joints. Accurately defining their pathogenesis and classifying them correctly are key for understanding and managing these diseases. In this doctoral thesis we explored specific autoantibody-defined myositis subsets and quantitatively compared the ability of autoantibodies to the 2017 EULAR/ACR classification standard to predict the phenotype of patients with myositis. We also performed RNA sequencing on 119 muscle biopsies of patients with different types of myositis and 20 controls. We studied the differential expression, performed pathway analysis and developed exploratory machine learning pipelines to define the specific expression profiles and pathogenic pathways in each disease subgroup. With these studies we determined that the autoantibodies outperform current clinical criteria to predict the phenotype of myositis patients and discovered unique expression profiles in the muscle tissue of patients with different types of myositis.
Language: English
Appears in Collections:Tesis doctorales (Bioinformatics)

Files in This Item:
File Description SizeFormat 
phd_bioinformatics_ipf.pdfPinal-Fernández_dissertation9,77 MBAdobe PDFThumbnail