Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/10609/146673
Registre complet de metadades
Camp DCValorLlengua/Idioma
dc.contributor.authorMegias, David-
dc.contributor.authorLerch-Hostalot, Daniel-
dc.contributor.otherUniversitat Oberta de Catalunya. Internet Interdisciplinary Institute (IN3)-
dc.contributor.otherUniversitat Oberta de Catalunya. Estudis d'Informàtica, Multimèdia i Telecomunicació-
dc.date.accessioned2022-08-11T08:41:53Z-
dc.date.available2022-08-11T08:41:53Z-
dc.date.issued2022-02-28-
dc.identifier.citationMegías, D. & Lerch-Hostalot, D. (2022). Subsequent embedding in targeted image steganalysis: Theoretical framework and practical applications. IEEE Transactions on Dependable and Secure Computing, 1-18. doi: 10.1109/TDSC.2022.3154967-
dc.identifier.issn1545-5971MIAR
-
dc.identifier.urihttp://hdl.handle.net/10609/146673-
dc.description.abstractSteganalysis is a collection of techniques used to detect whether secret information is embedded in a carrier using steganography. Most of the existing steganalytic methods are based on machine learning, which typically requires training a classifier with laboratory data. However, applying machine-learning classification to a new source of data is challenging, since there is typically a mismatch between the training and the testing sets. In addition, other sources of uncertainty affect the steganlytic process, including the mismatch between the targeted and the true steganographic algorithms, unknown parameters such as the message length and even having a mixture of several algorithms and parameters, which would constitute a realistic scenario. This paper presents subsequent embedding as a valuable strategy that can be incorporated into modern steganalysis. Although this solution has been applied in previous works, a theoretical basis for this strategy was missing. Here, we cover this research gap by introducing the directionality property of features with respect to data embedding. Once this strategy is sustained by a consistent theoretical framework, new practical applications are also described and tested against standard steganography, moving steganalysis closer to real-world conditions.en
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherIEEE Transactions on Dependable and Secure Computingca
dc.relation.ispartofIEEE Transactions on Dependable and Secure Computing, 2022-
dc.relation.urihttps://ieeexplore.ieee.org/document/9722958-
dc.rightsCC BY-NC-ND 3.0 Spain-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.subjectsteganographyen
dc.subjectsteganalysisen
dc.subjectmachine learningen
dc.subjectcover source mismatchen
dc.subjectstego source mismatchen
dc.subjectuncertaintyen
dc.subjectesteganografiaca
dc.subjectesteganàlisica
dc.subjectaprenentatge automàticca
dc.subjectcoberta desajust de fontsca
dc.subjectdesajust de fonts stegoca
dc.subjectincertesaca
dc.subjectesteganografíaes
dc.subjectesteganálisises
dc.subjectaprendizaje automáticoes
dc.subjectcubrir desajuste de fuentees
dc.subjectdesajuste de fuente stegoes
dc.subjectincertidumbrees
dc.subject.lcshmachine learningen
dc.titleSubsequent embedding in targeted image steganalysis: Theoretical framework and practical applicationsen
dc.typeinfo:eu-repo/semantics/articleca
dc.subject.lemacaprenentatge automàticca
dc.subject.lcshesaprendizaje automáticoes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.doihttp://doi.org/10.1109/TDSC.2022.3154967-
dc.gir.idAR/0000009550-
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/RTI2018-095094-B-C22-
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/PCI2020-120689-2-
dc.type.versioninfo:eu-repo/semantics/acceptedVersion-
Apareix a les col·leccions:Articles cientÍfics
Articles

Arxius per aquest ítem:
Arxiu Descripció MidaFormat 
2107.13862.pdf3,39 MBAdobe PDFThumbnail
Veure/Obrir
Comparteix:
Exporta:
Consulta les estadístiques

Els ítems del Repositori es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.