Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10609/147032
Título : | A multi-start biased-randomized algorithm for the capacitated dispersion problem |
Autoría: | Gómez González, Juan Francisco Panadero, Javier Tordecilla, Rafael D. Castaneda, Juliana Juan, Angel A. |
Otros: | Universitat Oberta de Catalunya (UOC) Universitat Politècnica de Catalunya (UPC) Universidad de La Sabana Universitat Politècnica de València |
Citación : | Gómez, J.F., Panadero, J., Tordecilla, R., Castañeda, J. & Juan Perez, A.A. (2022). A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem. Mathematics, 10(14), 1-20. doi: 10.3390/math10142405 |
Resumen : | The capacitated dispersion problem is a variant of the maximum diversity problem in which a set of elements in a network must be determined. These elements might represent, for instance, facilities in a logistics network or transmission devices in a telecommunication network. Usually, it is considered that each element is limited in its servicing capacity. Hence, given a set of possible locations, the capacitated dispersion problem consists of selecting a subset that maximizes the minimum distance between any pair of elements while reaching an aggregated servicing capacity. Since this servicing capacity is a highly usual constraint in real-world problems, the capacitated dispersion problem is often a more realistic approach than is the traditional maximum diversity problem. Given that the capacitated dispersion problem is an NP-hard problem, whenever large-sized instances are considered, we need to use heuristic-based algorithms to obtain high-quality solutions in reasonable computational times. Accordingly, this work proposes a multi-start biased-randomized algorithm to efficiently solve the capacitated dispersion problem. A series of computational experiments is conducted employing small-, medium-, and large-sized instances. Our results are compared with the best-known solutions reported in the literature, some of which have been proven to be optimal. Our proposed approach is proven to be highly competitive, as it achieves either optimal or near-optimal solutions and outperforms the non-optimal best-known solutions in many cases. Finally, a sensitive analysis considering different levels of the minimum aggregate capacity is performed as well to complete our study. |
Palabras clave : | problema de dispersión capacitada metaheurísticas algoritmos aleatorizados sesgados redes logísticas redes de telecomunicaciones |
DOI: | https://doi.org/10.3390/math10142405 |
Tipo de documento: | info:eu-repo/semantics/article |
Versión del documento: | info:eu-repo/semantics/publishedVersion |
Fecha de publicación : | 7-sep-2022 |
Licencia de publicación: | http://creativecommons.org/licenses/by/4.0 |
Aparece en las colecciones: | Articles cientÍfics Articles |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A multi-start biased-randomized algorithm for the capacitated dispersion problem.pdf | 576,72 kB | Adobe PDF | Visualizar/Abrir |
Comparte:
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.