Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/10609/148971
Registre complet de metadades
Camp DCValorLlengua/Idioma
dc.contributor.authorGindullina, Elvina-
dc.contributor.authorBadia, Leonardo-
dc.contributor.authorVilajosana, Xavier-
dc.date.accessioned2023-09-29T07:41:32Z-
dc.date.available2023-09-29T07:41:32Z-
dc.date.issued2019-08-16-
dc.date.issued2019-08-16-
dc.identifier.citationGindullina, E. [Elvina]. Badia, L. [Leonardo]. Vilajosana, X. [Xavier]. (2020). Energy modeling and adaptive sampling algorithms for energy-harvesting powered nodes with sampling rate limitations. Transactions on Emerging Telecommunications Technologies, 31(3), 1-15. doi: 10.1002/ett.3754-
dc.identifier.issn2161-3915MIAR
-
dc.identifier.urihttp://hdl.handle.net/10609/148971-
dc.description.abstractThis article explores the implementation of different sampling strategies for a practical energy-harvesting wireless device (sensor node) powered by a rechargeable battery. We look for a realistic yet effective sampling strategy that prevents packet delivery failures, which is simple enough to be implemented in low-complexity hardware. The article proposes methods that balance erratic energy arrivals and include advantages of dynamic data-driven approaches based on historical data. Due to the industrial requirements in terms of mini- mum acceptable sampling frequency, we also integrate sampling rate limits and verify the proposed methods. To do so, we simulated the operation of an indus- trial data logger powered with a solar panel relying on the enhanced state of the model for battery charging. Finally, the proposed methods are compared based on energy consumption over a year and the amount of packet delivery failures, thus showing how some modifications of available strategies achieve satisfactory performance in this sense.en
dc.description.abstractThis article explores the implementation of different sampling strategies for a practical energy-harvesting wireless device (sensor node) powered by a rechargeable battery. We look for a realistic yet effective sampling strategy that prevents packet delivery failures, which is simple enough to be implemented in low-complexity hardware. The article proposes methods that balance erratic energy arrivals and include advantages of dynamic data-driven approaches based on historical data. Due to the industrial requirements in terms of mini- mum acceptable sampling frequency, we also integrate sampling rate limits and verify the proposed methods. To do so, we simulated the operation of an indus- trial data logger powered with a solar panel relying on the enhanced state of the model for battery charging. Finally, the proposed methods are compared based on energy consumption over a year and the amount of packet delivery failures, thus showing how some modifications of available strategies achieve satisfactory performance in this sense.en
dc.format.mimetypeapplication/pdfca
dc.language.isoengca
dc.publisherWileyca
dc.publisherWileyca
dc.relation.ispartofTransactions on Emerging Telecommunications Technologies, 2019, 31(3), 1-15.-
dc.relation.urihttps://doi.org/10.1002/ett.3754-
dc.rights© 2019 John Wiley & Sons, Ltd.-
dc.titleEnergy modeling and adaptive sampling algorithms for energy-harvesting powered nodes with sampling rate limitationsca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.doihttps://doi.org/10.1002/ett.3754-
dc.gir.idAR/0000007353-
dc.type.versioninfo:eu-repo/semantics/acceptedVersion-
Apareix a les col·leccions:Articles cientÍfics
Articles

Arxius per aquest ítem:
Arxiu Descripció MidaFormat 
Elvina_Energy_ETT_merged.pdf1,35 MBAdobe PDFThumbnail
Veure/Obrir
Comparteix:
Exporta:
Consulta les estadístiques

Els ítems del Repositori es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.