Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/10609/149174
Títol: A synthetic data generation system for myalgic encephalomyelitis/chronic fatigue syndrome questionnaires
Autoria: Lacasa-Cazcarra, Marcos  
Prados Carrasco, Ferran  
Caamaño-Alegre, José  
Casas-Roma, Jordi  
Citació: Lacasa-Cazcarra, M. [Marcos]. Prados, F. [Ferran]. Alegre-Martín, J. [José]. Casas-Roma, J. [Jordi]. (2023). A synthetic data generation system for myalgic encephalomyelitis/chronic fatigue syndrome questionnaires. Scientific Reports, 13(1), 1-10. doi: 10.1038/s41598-023-40364-6
Resum: Artificial intelligence or machine‐learning‐based models have proven useful for better understanding various diseases in all areas of health science. Myalgic Encephalomyelitis or chronic fatigue syndrome (ME/CFS) lacks objective diagnostic tests. Some validated questionnaires are used for diagnosis and assessment of disease progression. The availability of a sufficiently large database of these questionnaires facilitates research into new models that can predict profiles that help to understand the etiology of the disease. A synthetic data generator provides the scientific community with databases that preserve the statistical properties of the original, free of legal restrictions, for use in research and education. The initial databases came from the Vall Hebron Hospital Specialized Unit in Barcelona, Spain. 2522 patients diagnosed with ME/CFS were analyzed. Their answers to questionnaires related to the symptoms of this complex disease were used as training datasets. They have been fed for deep learning algorithms that provide models with high accuracy [0.69–0.81]. The final model requires SF‐36 responses and returns responses from HAD, SCL‐90R, FIS8, FIS40, and PSQI questionnaires. A highly reliable and easy‐to‐use synthetic data generator is offered for research and educational use in this disease, for which there is currently no approved treatment.
DOI: https://doi.org/10.1038/s41598-023-40364-6
Tipus de document: info:eu-repo/semantics/article
Versió del document: info:eu-repo/semantics/publishedVersion
Data de publicació: 31-ago-2023
Llicència de publicació: http://creativecommons.org/licenses/by/4.0/es/  
Apareix a les col·leccions:Articles
Articles cientÍfics

Arxius per aquest ítem:
Arxiu Descripció MidaFormat 
Lacasa_Synthetic_SR.pdf1,42 MBAdobe PDFThumbnail
Veure/Obrir
Comparteix:
Exporta:
Consulta les estadístiques

Els ítems del Repositori es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.