Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/149336
Título : Biomedical holistic ontology for people with rare diseases
Autoría: Subirats, Laia  
Conesa, Jordi  
Armayones, Manuel  
Citación : Subirats, L. [Laia], Conesa, J. [Jordi], & Armayones, M. [Manuel]. (2020). Biomedical holistic ontology for people with rare diseases. International Journal of Environmental Research and Public Health, 17(17), 6038. doi: 10.3390/ijerph17176038
Resumen : This research provides a biomedical ontology to adequately represent the information necessary to manage a person with a disease in the context of a specific patient. A bottom-up approach was used to build the ontology, best ontology practices described in the literature were followed and the minimum information to reference an external ontology term (MIREOT) methodology was used to add external terms of other ontologies when possible. Public data of rare diseases from rare associations were used to build the ontology. In addition, sentiment analysis was performed in the standardized data using the Python library Textblob. A new holistic ontology was built, which models 25 real scenarios of people with rare diseases. We conclude that a comprehensive profile of patients is needed in biomedical ontologies. The generated code is openly available, so this research is partially reproducible. Depending on the knowledge needed, several views of the ontology should be generated. Links to other ontologies should be used more often to model the knowledge more precisely and improve flexibility. The proposed holistic ontology has many benefits, such as a more standardized computation of sentiment analysis between attributes.
Palabras clave : biomedical ontologies
medical health records
interoperability
sentiment analysis
DOI: https://doi.org/10.3390/ijerph17176038
Tipo de documento: info:eu-repo/semantics/article
Versión del documento: info:eu-repo/semantics/publishedVersion
Fecha de publicación : 1-sep-2020
Licencia de publicación: http://creativecommons.org/licenses/by/3.0/es/  
Datos relacionados: https://mdpi.altmetric.com/details/88520784
Aparece en las colecciones: Articles cientÍfics
Articles

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Subirats_ijerph_Biomedical.pdf421,62 kBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons