Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/150356
Título : Inside Airbnb’s performance and adaptive strategies in Barcelona using artificial neural networks: A longitudinal, spatial, and multi-host perspective
Autoría: Morales-Pérez, Soledad  
Meseguer-Artola, Antoni  
Garay, Lluis  
Llados-Masllorens, Josep  
Citación : Morales Pérez, S. [Soledad], Meseguer-Artola, A. [Antoni] Garay-Tamajón, L. [Lluís] & Lladós Masllorens, J. [Josep] (2024). Inside Airbnb's performance and adaptive strategies in Barcelona using artificial neural networks: A longitudinal, spatial, and multi-host perspective. Journal of Hospitality and Tourism Management, 59, 238-250. doi: 10.1016/j.jhtm.2024.04.010
Resumen : This research explores the Airbnb platform's performance and adaptive strategies by analysing its spatial, temporal, and multi-host patterns. A three-layer model based on machine learning and neural networks, compared with a multiple linear regression, Random Forest Regression (RFR), and Support Vector Regression (SVR) methods, is used to conduct a longitudinal analysis of three representative months for tourism each year from 2016 to 2022. The study reveals the importance of “minimum nights”, active price management and professionalization, coupled with the potential transfer of accommodations in the medium- and long-term residential markets, as the platform's adaptive strategies. The findings also suggest a shift towards more professional host profiles and the consolidation of new tourist hubs in the city in post-Covid period. The study contributes to the understanding of Airbnb's performance and impact on global urban dynamics and demonstrates an application of machine learning to tourism and hospitality research. Theoretical and practical implications are discussed.
Palabras clave : platform economy
machine learning
artificial neural networks
adaptive strategies
post-covid
Airbnb
DOI: http://doi.org/10.1016/j.jhtm.2024.04.010
Tipo de documento: info:eu-repo/semantics/article
Versión del documento: info:eu-repo/semantics/submittedVersion
Fecha de publicación : 3-may-2024
Licencia de publicación: http://creativecommons.org/licenses/by-nc-nd/3.0/es/  
Aparece en las colecciones: Articles
Articles cientÍfics

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
morales_jhtm_inside.pdf1,47 MBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.