Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/151734
Título : Efficiently Downdating, Composing and Splitting Singular Value Decompositions Preserving the Mean Information
Autoría: Melenchón, Javier  
Martínez, Elisa
Citación : Melenchón, J. [Javier], Martínez, E. [Elisa]. (2007). Efficiently Downdating, Composing and Splitting Singular Value Decompositions Preserving the Mean Information. Pattern Recognition and Image Analysis (IbPRIA 2007), 4478. doi: 10.1007/978-3-540-72849-8_55
Resumen : Three methods for the efficient downdating, composition and splitting of low rank singular value decompositions are proposed. They are formulated in a closed form, considering the mean information and providing exact results. Although these methods are presented in the context of computer vision, they can be used in any field forgetting information, combining different eigenspaces in one or ignoring particular dimensions of the column space of the data. Application examples on face subspace learning and latent semantic analysis are given and performance results are provided.
Palabras clave : video sequence
singular value decomposition
high dimensional data
singular vector
latent semantic analysis
DOI: https://doi.org/10.1007/978-3-540-72849-8_55
Tipo de documento: info:eu-repo/semantics/conferenceObject
Versión del documento: info:eu-repo/semantics/publishedVersion
Fecha de publicación : 1-jul-2007
Licencia de publicación: https://creativecommons.org/licenses/by/4.0/  
Aparece en las colecciones: Articles cientÍfics
Articles

Comparte:
Exporta:
Consulta las estadísticas

Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.