Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/151991
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorNderitu, Paul-
dc.contributor.authorNunez do Rio, Joan M-
dc.contributor.authorWebster, Laura-
dc.contributor.authorMann, Samantha-
dc.contributor.authorHopkins, David-
dc.contributor.authorCardoso, M. Jorge-
dc.contributor.authorModat, Marc-
dc.contributor.authorBergeles, Christos-
dc.contributor.authorJackson, Timothy-
dc.date.accessioned2025-02-03T13:49:41Z-
dc.date.available2025-02-03T13:49:41Z-
dc.date.issued2022-07-01-
dc.identifier.citationNderitu, P., Nunez do Rio, J.M., Webster, M.L. et al. Automated image curation in diabetic retinopathy screening using deep learning. Sci Rep 12, 11196 (2022). https://doi.org/10.1038/s41598-022-15491-1-
dc.identifier.urihttp://hdl.handle.net/10609/151991-
dc.description.abstractDiabetic retinopathy (DR) screening images are heterogeneous and contain undesirable non-retinal, incorrect field and ungradable samples which require curation, a laborious task to perform manually. We developed and validated single and multi-output laterality, retinal presence, retinal field and gradability classification deep learning (DL) models for automated curation. The internal dataset comprised of 7743 images from DR screening (UK) with 1479 external test images (Portugal and Paraguay). Internal vs external multi-output laterality AUROC were right (0.994 vs 0.905), left (0.994 vs 0.911) and unidentifiable (0.996 vs 0.680). Retinal presence AUROC were (1.000 vs 1.000). Retinal field AUROC were macula (0.994 vs 0.955), nasal (0.995 vs 0.962) and other retinal field (0.997 vs 0.944). Gradability AUROC were (0.985 vs 0.918). DL effectively detects laterality, retinal presence, retinal field and gradability of DR screening images with generalisation between centres and populations. DL models could be used for automated image curation within DR screening.en
dc.format.mimetypeapplication/pdfca
dc.language.isoengen
dc.publisherSpringer Natureca
dc.relation.ispartofScientific Reports, 2022, 12ca
dc.relation.urihttps://doi.org/10.1038/s41598-022-15491-1-
dc.rightsCC BY*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/-
dc.titleAutomated image curation in diabetic retinopathy screening using deep learningca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.doihttps://doi.org/10.1038/s41598-022-15491-1-
dc.type.versioninfo:eu-repo/semantics/publishedVersion-
Aparece en las colecciones: Articles
Articles cientÍfics

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DoRio_Automated.pdf3,66 MBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons