Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/152499
Título : A Robust and Non-invasive Strategy for Preserving Academic Integrity in an Open and Distance Learning Environment
Autoría: Amigud, Alexander  
Arnedo-Moreno, Joan  
Daradoumis, Thanasis  
Guerrero-Roldán, Ana-Elena  
Citación : Amigud, A., Arnedo, J., Daradoumis, A. & Guerrero-Roldán, A.E. (2017). A Robust and Non-Invasive Strategy for Preserving Academic Integrity in an Open and Distance Learning Environment. In R. Vasiu & R. Huang & Nian-Shing Chen & M. Chang & Sampson D.G. Kinshuk (ed.). 17th IEEE International Conference on Advanced Learning Technologies (ICALT 2017) (p. 530-532). Los Alamitos, CA: IEEE Computer Society
Resumen : The aim of this research project is to evaluate a novel approach to providing academic integrity through behavioral pattern analysis for continuous and on-demand assessments. Our objective is to empower instructors with efficient and automated tools that promote accountability and academic integrity, while providing students with an accessible, non-invasive, privacy preserving and convenient validation of the student-generated academic content. The contributions of the proposed study are threefold: (1) the bridged anonymity gap between learners and instructors, (2) an open source learning technology that enhances academic integrity, and (3) understanding of how the behavioral-based biometric technologies are perceived by students and instructors.
Palabras clave : academic integrity
decision support systems
learning analytics
technology-enhanced assessment
smart learning environments
DOI: http://doi.org/10.1109/ICALT.2017.23
Tipo de documento: info:eu-repo/semantics/conferenceObject
Versión del documento: info:eu-repo/semantics/acceptedVersion
Fecha de publicación : 7-ago-2017
Aparece en las colecciones: Conferències

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
amigud_icalt17_robust.pdf402,49 kBAdobe PDFVista previa
Visualizar/Abrir
Comparte:
Exporta:
Consulta las estadísticas

Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.