Empreu aquest identificador per citar o enllaçar aquest ítem:
http://hdl.handle.net/10609/152520
Registre complet de metadades
Camp DC | Valor | Llengua/Idioma |
---|---|---|
dc.contributor.author | Casas-Roma, Jordi | - |
dc.date.accessioned | 2025-05-02T10:35:25Z | - |
dc.date.available | 2025-05-02T10:35:25Z | - |
dc.date.issued | 2020-08 | - |
dc.identifier.citation | Casas-Roma, J. [Jordi]. (2020). DUEF-GA: data utility and privacy evaluation framework for graph anonymization. International Journal of Information Security, 19(4), 465-478. doi: 10.1007/s10207-019-00469-4 | - |
dc.identifier.issn | 1615-5270MIAR | - |
dc.identifier.uri | http://hdl.handle.net/10609/152520 | - |
dc.description.abstract | Anonymization of graph-based data is a problem which has been widely studied over the last years, and several anonymization methods have been developed. Information loss measures have been used to evaluate data utility and information loss in the anonymized graphs. However, there is no consensus about how to evaluate data utility and information loss in privacy-preserving and anonymization scenarios, where the anonymous datasets were perturbed to hinder re-identification processes. Authors use diverse metrics to evaluate data utility and, consequently, it is complex to compare different methods or algorithms in the literature. In this paper, we propose a framework to evaluate and compare anonymous datasets in a common way, providing an objective score to clearly compare methods and algorithms. Our framework includes metrics based on generic information loss measures, such as average distance or betweenness centrality and also task-specific information loss measures, such as community detection or information flow. Additionally, we provide some metrics to examine re-identification and risk assessment. We demonstrate that our framework could help researchers and practitioners to select the best parametrization and/or algorithm to reduce information loss and maximize data utility. | en |
dc.format.mimetype | application/pdf | ca |
dc.language.iso | eng | ca |
dc.publisher | Springer Nature | ca |
dc.relation.ispartof | International Journal of Information Security, 2020, 19(4) | ca |
dc.rights | © Springer-Verlag GmbH Germany, part of Springer Nature | - |
dc.subject | privacy-preserving | en |
dc.subject | anonymity | en |
dc.subject | evaluation framework | en |
dc.subject | data utility | en |
dc.subject | social networks | en |
dc.subject | graphs | en |
dc.title | DUEF-GA: data utility and privacy evaluation framework for graph anonymization | ca |
dc.type | info:eu-repo/semantics/article | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
dc.identifier.doi | https://doi.org/10.1007/s10207-019-00469-4 | - |
dc.gir.id | AR/0000007352 | - |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN/2018/RTI2018-095094-B-C22 | - |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/2014/TIN2014-57364-C2-2-R | - |
dc.type.version | info:eu-repo/semantics/acceptedVersion | - |
Apareix a les col·leccions: | Articles cientÍfics Articles |
Arxius per aquest ítem:
Arxiu | Descripció | Mida | Format | |
---|---|---|---|---|
Casas_IJIS_DUEF-GA.pdf | 468,37 kB | Adobe PDF | ![]() Veure/Obrir |
Comparteix:


Els ítems del Repositori es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.