Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10609/70708
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Torrent-Sellens, Joan | - |
dc.contributor.author | Díaz-Chao, Ángel | - |
dc.contributor.author | Soler Ramos, Iván | - |
dc.contributor.author | Saigí-Rubió, Francesc | - |
dc.date.accessioned | 2017-12-14T13:41:57Z | - |
dc.date.available | 2017-12-14T13:41:57Z | - |
dc.date.issued | 2016-07 | - |
dc.identifier.citation | Torrent-Sellens, J., Díaz Chao, Á., Soler Ramos, I. & Saigí-Rubió, F. (2016). "Modelling and predicting eHealth usage in Europe: A multidimensional approachfrom an online survey of 13,000 European Union Internet users". Journal of Medical Internet Research, 18(7). ISSN 1439-4456. doi: 10.2196/jmir.5605 | - |
dc.identifier.issn | 1439-4456MIAR | - |
dc.identifier.uri | http://hdl.handle.net/10609/70708 | - |
dc.description.abstract | Background: More advanced methods and models are needed to evaluate the participation of patients and citizens in the shared health care model that eHealth proposes. Objective: The goal of our study was to design and evaluate a predictive multidimensional model of eHealth usage. Methods: We used 2011 survey data from a sample of 13,000 European citizens aged 16-74 years who had used the Internet in the previous 3 months. We proposed and tested an eHealth usage composite indicator through 2-stage structural equation modelling with latent variables and measurement errors. Logistic regression (odds ratios, ORs) to model the predictors of eHealth usage was calculated using health status and sociodemographic independent variables. Results: The dimensions with more explanatory power of eHealth usage were health Internet attitudes, information health Internet usage, empowerment of health Internet users, and the usefulness of health Internet usage. Some 52.39% (6811/13,000) of European Internet users' eHealth usage was more intensive (greater than the mean). Users with long-term health problems or illnesses (OR 1.20, 95% CI 1.12-1.29) or receiving long-term treatment (OR 1.11, 95% CI 1.03-1.20), having family members with long-term health problems or illnesses (OR 1.44, 95% CI 1.34-1.55), or undertaking care activities for other people (OR 1.58, 95% CI 1.40-1.77) had a high propensity toward intensive eHealth usage. Sociodemographic predictors showed that Internet users who were female (OR 1.23, 95% CI 1.14-1.31), aged 25-54 years (OR 1.12, 95% CI 1.05-1.21), living in larger households (3 members: OR 1.25, 95% CI 1.15-1.36; 5 members: OR 1.13, 95% CI 0.97-1.28; >= 6 members: OR 1.31, 95% CI 1.10-1.57), had more children <16 years of age (1 child: OR 1.29, 95% CI 1.18-1.14; 2 children: OR 1.05, 95% CI 0.94-1.17; 4 children: OR 1.35, 95% CI 0.88-2.08), and had more family members >65 years of age (1 member: OR 1.33, 95% CI 1.18-1.50; >= 4 members: OR 1.82, 95% CI 0.54-6.03) had a greater propensity toward intensive eHealth usage. Likewise, users residing in densely populated areas, such as cities and large towns (OR 1.17, 95% CI 1.09-1.25), also had a greater propensity toward intensive eHealth usage. Educational levels presented an inverted U shape in relation to intensive eHealth usage, with greater propensities among those with a secondary education (OR 1.08, 95% CI 1.01-1.16). Finally, occupational categories and net monthly income data suggest a higher propensity among the employed or self-employed (OR 1.07, 95% CI 0.99-1.15) and among the minimum wage stratum, earning <=(sic)1000 per month (OR 1.66, 95% CI 1.48-1.87). Conclusions: We provide new evidence of inequalities that explain intensive eHealth usage. The results highlight the need to develop more specific eHealth practices to address different realities. | en |
dc.description.abstract | El objetivo de nuestro estudio fue diseñar y evaluar un modelo predictivo multidimensional de uso de eSalud. Utilizamos datos de la encuesta de 2011 de una muestra de 13.000 ciudadanos europeos de entre 16 y 74 años que habían usado internet en los últimos 3 meses. Propusimos y probamos un indicador compuesto de uso de eSalud mediante el modelado de ecuaciones estructurales de 2 etapas con variables latentes y errores de medición. La regresión logística (odds ratios, OR) para modelar los predictores del uso de eHealth se calculó utilizando el estado de salud y las variables sociodemográficas independientes. Las dimensiones con mayor poder explicativo del uso de eHealth fueron las actitudes de internet sobre la salud, el uso de internet de la salud de la información, el empoderamiento de los usuarios de internet de la salud y la utilidad del uso de internet en la salud. | es |
dc.description.abstract | L'objectiu del nostre estudi va ser dissenyar i avaluar un model predictiu multidimensional d'ús d'eSalut. Utilitzem dades de l'enquesta de 2011 d'una mostra de 13.000 ciutadans europeus d'entre 16 i 74 anys que havien usat internet en els últims 3 mesos. Vam proposar i vam provar un indicador compost d'ús d'eSalut mitjançant el modelatge d'equacions estructurals de 2 etapes amb variables latents i errors de mesurament. La regressió logística (odds ratios, OR) per modelar els predictors de l'ús d'eHealth es va calcular utilitzant l'estat de salut i les variables sociodemogràfiques independents. Les dimensions amb major poder explicatiu de l'ús d'eHealth van ser les actituds d'internet sobre la salut, l'ús d'internet de la salut de la informació, l'empoderament dels usuaris d'internet de la salut i la utilitat de l'ús d'internet a la salut | ca |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Journal of Medical Internet Research | - |
dc.rights | CC BY | - |
dc.rights.uri | https://creativecommons.org/licenses/by/2.0/ | - |
dc.subject | Internet | en |
dc.subject | internet | es |
dc.subject | internet | ca |
dc.subject | eHealth usage | en |
dc.subject | ús d'eSalut | ca |
dc.subject | uso d'eSalud | es |
dc.subject | health care | en |
dc.subject | atenció sanitària | ca |
dc.subject | atención sanitaria | es |
dc.subject | health drivers | en |
dc.subject | conductors de la salut | ca |
dc.subject | conductores de la salud | es |
dc.subject | health barriers | en |
dc.subject | barreres sanitàries | ca |
dc.subject | barreras sanitarias | es |
dc.subject | health attitude | en |
dc.subject | actitud sanitaria | es |
dc.subject | actitud sanitària | ca |
dc.subject | health information | en |
dc.subject | informació sanitària | ca |
dc.subject | información sanitaria | es |
dc.subject | health empowerment | en |
dc.subject | empoderamiento de la salud | es |
dc.subject | empoderament de la salut | ca |
dc.subject | ICT | en |
dc.subject | TIC | ca |
dc.subject | TIC | es |
dc.subject | modelado de ecuaciones estructurales | es |
dc.subject | structural equation modelling | en |
dc.subject | modelat d'equació estructural | ca |
dc.subject | Europe | en |
dc.subject | Europa | ca |
dc.subject | Europa | es |
dc.subject.lcsh | Medical telematics -- European Union countries | en |
dc.title | Modelling and predicting eHealth usage in Europe: A multidimensional approach from an online survey of 13,000 European Union Internet users | - |
dc.type | info:eu-repo/semantics/article | - |
dc.subject.lemac | Telemedicina -- Unió Europea, Països de la | ca |
dc.subject.lcshes | Telemedicina -- Unión Europea, Países de la | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
dc.identifier.doi | 10.2196/jmir.5605 | - |
dc.gir.id | AR/0000004969 | - |
Aparece en las colecciones: | Articles Articles cientÍfics |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Torrent_JMIR16_Modelling.pdf | 647,37 kB | Adobe PDF | ![]() Visualizar/Abrir |
Comparte:


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.