Please use this identifier to cite or link to this item:
Title: k-Degree anonymity and edge selection: Improving data utility in large networks
Author: Casas-Roma, Jordi  
Herrera-Joancomartí, Jordi  
Torra, Vicenç  
Universitat Oberta de Catalunya. Internet Interdisciplinary Institute (IN3)
Universitat Autònoma de Barcelona (UAB)
University of Skövde
Citation: Casas-Roma, J., Herrera-Joancomartí, J. & Torra, V. (2017). k-Degree Anonymity And Edge Selection: Improving Data Utility In Large Networks. Knowledge and Information Systems, 50(2), 447-474. doi: 10.1007/s10115-016-0947-7
Abstract: The problem of anonymization in large networks and the utility of released data are considered in this paper. Although there are some anonymization methods for networks, most of them cannot be applied in large networks because of their complexity. In this paper, we devise a simple and efficient algorithm for k-degree anonymity in large networks. Our algorithm constructs a k-degree anonymous network by the minimum number of edge modifications. We compare our algorithm with other well-known k-degree anonymous algorithms and demonstrate that information loss in real networks is lowered. Moreover, we consider the edge relevance in order to improve the data utility on anonymized networks. By considering the neighbourhood centrality score of each edge, we preserve the most important edges of the network, reducing the information loss and increasing the data utility. An evaluation of clustering processes is performed on our algorithm, proving that edge neighbourhood centrality increases data utility. Lastly, we apply our algorithm to different large real datasets and demonstrate their efficiency and practical utility.
Keywords: privacy
social networks
information loss
data utility
edge measures
DOI: 10.1007/s10115-016-0947-7
Type: info:eu-repo/semantics/article
Issue Date: Feb-2017
Publication license:
Appears in Collections:Articles cientÍfics

Files in This Item:
File Description SizeFormat 
k-anonymity-large-networks [postprint].pdf871,15 kBAdobe PDFThumbnail