Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/122026
Título : Swapping trajectories with a sufficient sanitizer
Autoría: Salas, Julián  
Megias, David  
Torra, Vicenç  
Toger, Marina
Dahne, Joel
Sainudiin, Raazesh
Otros: Universitat Oberta de Catalunya. Internet Interdisciplinary Institute (IN3)
Maynooth University
University of Skövde
Uppsala University
Citación : Salas, J., Megías, D., Torra, V., Toger, M., Dahne, J. & Sainudiin, R. (2020). Swapping trajectories with a sufficient sanitizer. Pattern Recognition Letters, 131(), 474-480. doi: 10.1016/j.patrec.2020.02.011
Resumen : Real-time mobility data is useful for several applications such as planning transports in metropolitan ar- eas or localizing services in towns. However, if such data is collected without any privacy protection it may reveal sensible locations and pose safety risks to an individual associated to it. Thus, mobility data must be anonymized preferably at the time of collection. In this paper, we consider the SwapMob algo- rithm that mitigates privacy risks by swapping partial trajectories. We formalize the concept of sufficient sanitizer and show that the SwapMob algorithm is a sufficient sanitizer for various statistical decision problems. That is, it preserves the aggregate information of the spatial database in the form of sufficient statistics and also provides privacy to the individuals. This may be used for personalized assistants taking advantage of users' locations, so they can ensure user privacy while providing accurate response to the user requirements. We measure the privacy provided by SwapMob as the Adversary Information Gain, which measures the capability of an adversary to leverage his knowledge of exact data points to infer a larger segment of the sanitized trajectory. We test the utility of the data obtained after applying Swap- Mob sanitization in terms of Origin-Destination matrices, a fundamental tool in transportation modelling.
Palabras clave : privacidad en la minería de datos de movilidad
anonimización de datos de movilidad en tiempo real
anonimización de la trayectoria
sistemas inteligentes de transporte
matrices origen-destino
depuración suficiente
DOI: 10.1016/j.patrec.2020.02.011
Tipo de documento: info:eu-repo/semantics/article
Versión del documento: info:eu-repo/semantics/publishedVersion
Fecha de publicación : 2-mar-2020
Licencia de publicación: http://creativecommons.org/licenses/by/4.0/es/  
Aparece en las colecciones: Articles cientÍfics
Articles

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Salas_Mejias_PRL_Swaping.pdf544,34 kBAdobe PDFVista previa
Visualizar/Abrir