Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10609/122026
Título : | Swapping trajectories with a sufficient sanitizer |
Autoría: | Salas, Julián Megias, David Torra, Vicenç Toger, Marina Dahne, Joel Sainudiin, Raazesh |
Otros: | Universitat Oberta de Catalunya. Internet Interdisciplinary Institute (IN3) Maynooth University University of Skövde Uppsala University |
Citación : | Salas, J., Megías, D., Torra, V., Toger, M., Dahne, J. & Sainudiin, R. (2020). Swapping trajectories with a sufficient sanitizer. Pattern Recognition Letters, 131(), 474-480. doi: 10.1016/j.patrec.2020.02.011 |
Resumen : | Real-time mobility data is useful for several applications such as planning transports in metropolitan ar- eas or localizing services in towns. However, if such data is collected without any privacy protection it may reveal sensible locations and pose safety risks to an individual associated to it. Thus, mobility data must be anonymized preferably at the time of collection. In this paper, we consider the SwapMob algo- rithm that mitigates privacy risks by swapping partial trajectories. We formalize the concept of sufficient sanitizer and show that the SwapMob algorithm is a sufficient sanitizer for various statistical decision problems. That is, it preserves the aggregate information of the spatial database in the form of sufficient statistics and also provides privacy to the individuals. This may be used for personalized assistants taking advantage of users' locations, so they can ensure user privacy while providing accurate response to the user requirements. We measure the privacy provided by SwapMob as the Adversary Information Gain, which measures the capability of an adversary to leverage his knowledge of exact data points to infer a larger segment of the sanitized trajectory. We test the utility of the data obtained after applying Swap- Mob sanitization in terms of Origin-Destination matrices, a fundamental tool in transportation modelling. |
Palabras clave : | privacidad en la minería de datos de movilidad anonimización de datos de movilidad en tiempo real anonimización de la trayectoria sistemas inteligentes de transporte matrices origen-destino depuración suficiente |
DOI: | 10.1016/j.patrec.2020.02.011 |
Tipo de documento: | info:eu-repo/semantics/article |
Versión del documento: | info:eu-repo/semantics/publishedVersion |
Fecha de publicación : | 2-mar-2020 |
Licencia de publicación: | http://creativecommons.org/licenses/by/4.0/es/ |
Aparece en las colecciones: | Articles cientÍfics Articles |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Salas_Mejias_PRL_Swaping.pdf | 544,34 kB | Adobe PDF | Visualizar/Abrir |
Comparte:
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons