Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/147683
Título : A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics
Autoría: Juan, Angel A.  
Keenan, Peter  
Marti, Rafael  
McGarraghy, Sean
Panadero, Javier  
Carroll, Paula  
Oliva, Diego  
Otros: Universitat Oberta de Catalunya. Internet Interdisciplinary Institute (IN3)
University College Dublin
Universidad de Valencia
Universidad de Guadalajara
Citación : Juan Perez, A.A., Keenan, P., Martí, R., McGarraghy, S., Panadero, J., Carroll, P. & Oliva, D. (2023). A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics. Annals of Operations Research, 320(2), 831-861. doi: 10.1007/s10479-021-04142-9
Resumen : In the context of simulation-based optimisation, this paper reviews recent work related to the role of metaheuristics, matheuristics (combinations of exact optimisation methods with metaheuristics), simheuristics (hybridisation of simulation with metaheuristics), biased-randomised heuristics for ‘agile’ optimisation via parallel computing, and learnheuristics (combination of statistical/machine learning with metaheuristics) to deal with NP-hard and large-scale optimisation problems in areas such as transport and logistics, manufacturing and production, smart cities, telecommunication networks, finance and insurance, sustainable energy consumption, health care, military and defence, e-marketing, or bioinformatics. The manuscript provides the main related concepts and updated references that illustrate the applications of these hybrid optimisation–simulation–learning approaches in solving rich and real-life challenges under dynamic and uncertainty scenarios. A numerical analysis is also included to illustrate the benefits that these approaches can offer across different application fields. Finally, this work concludes by highlighting open research lines on the combination of these methodologies to extend the concept of simulation-based optimisation.
Palabras clave : metaheurísticas
simheurística
aprendizaje heurístico
heurísticas aleatorias sesgadas
optimización estocástica
optimización dinámica
DOI: https://doi.org/10.1007/s10479-021-04142-9
Tipo de documento: info:eu-repo/semantics/article
Versión del documento: info:eu-repo/semantics/publishedVersion
Fecha de publicación : 16-ene-2023
Aparece en las colecciones: Articles cientÍfics
Articles

Comparte:
Exporta:
Consulta las estadísticas

Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.