Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10609/78246
Título : Gesture detection using passive RFID tags to enable people-centric IoT applications
Autoría: Parada Medina, Raúl  
Melià-Seguí, Joan  
Otros: Università degli Studi di Padova
Universitat Oberta de Catalunya (UOC)
Citación : Parada Medina, R. & Melià Seguí, J. (2017). Gesture detection using passive RFID tags to enable people-centric IoT applications. IEEE Communications Magazine, 55(2), 56-61. doi: 10.1109/MCOM.2017.1600701CM
Resumen : Our society may enhance and create new services in a people-centric IoT context through the exchange of information with sensor devices. Unfortunately, communication and services may be compromised due to a number of factors including unreliable communication, complexity, and security threats like spoofing. Within the technologies involved in the IoT paradigm, passive RFID allows the inventorying of simple objects toward wireless communication with a low-cost investment. We present a solution to increase the personalization of IoT applications and services (e.g., accessing a restricted area with a contact- less card) by detecting people-object gestures with an accelerometer-enabled passive RFID tag. We demonstrate the feasibility of our proposal by achieving a precision of 85 percent in people-object gestures classification. As a future task, we aim to implement it in a real scenario.
Palabras clave : detección de gestos
etiquetas RFID pasivas
aplicaciones del Internet de las cosas centradas en las personas
intercambio de información
dispositivos de sensores
comunicación poco fiable
amenazas de seguridad
Tipo de documento: info:eu-repo/semantics/article
Versión del documento: info:eu-repo/semantics/submittedVersion
Fecha de publicación : 3-feb-2017
Licencia de publicación: http://creativecommons.org/licenses/by-nc-nd/3.0/es/  
Aparece en las colecciones: Articles cientÍfics
Articles

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
preprint_gesture-detection-passive.pdf432,51 kBAdobe PDFVista previa
Visualizar/Abrir